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Abstract

In this paper we consider horseshoes containing an orbit of homoclinic tangency
accumulated by periodic points. We prove a version of the Invariant Manifolds
Theorem, construct finite Markov partitions and use them to prove the existence
and uniqueness of equilibrium states associated to Hölder continuous potentials.

1 Introduction and statement of results

The goal of this paper is to study some dynamical and ergodic properties of a special class
of non-uniformly hyperbolic horseshoes. The non-uniform hyperbolicity, for the systems
studied here, comes as a consequence of the presence of a single orbit of homoclinic
tangency inside the horseshoe, that is, accumulated by periodic orbits of it.

For uniformly hyperbolic systems, results as the existence of stable and unstable man-
ifolds and equilibrium states, as the ones we present here, are obtained in abstract, from
a general theory that applies to all systems. The existence of the hyperbolic splitting over
the compact invariant set under study, together with the uniform rates of expansion and
contraction are strongly used. The conjugacy between the system and some subshift in
finitely many symbols allows one to have a complete description of almost all the orbits,
in a very wide sense.

In order to extend this theory beyond the uniformly hyperbolic case, one usually con-
siders two settings: partially hyperbolic systems, and non-uniformly hyperbolic systems.
In the first case, the lack of hyperbolicity comes from the degeneracy in the rates of
expansion and contraction, and some invariant splitting is assumed to be kept. In that
case, under some conditions, the invariant manifolds can be shown to exist (see e.g. [15]
for a survey on the subject). In the second case, the existence of invariant manifolds
is shown, for instance, in the so-called Pesin theory, for almost all points, according to
some measure (see e.g. [14] and [8]). Features as the size of the manifolds, in both cases,
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depend on what are called hyperbolic returns, and it is not possible to say much about
them in abstract.

A significant part of the theory to study non-uniformly hyperbolic dynamical systems
is based on models and examples. In our case we present a model, first introduced in [17],
and prove an appropriate version of the so-called (un)stable manifold theorem, stating
some of the properties of the invariant manifolds. We also prove that the dynamical
system is semi-conjugated to the full 3-shift. As a consequence of the regularity of the
semi-conjugacy, we obtain existence and uniqueness of an equilibrium state associated to
each given Hölder continuous function ϕ.

Here, the setting is in some sense between the classical topological studies of uniformly
hyperbolic dynamical systems and the Pesin’s Theory. Since homoclinic tangencies take
part in the limit set, we do not have partial hyperbolicity or dominated splitting of the
tangent space over it. Moreover, one of the goals of this work is to construct invariant
measures. Since the development of Pesin’s theory is, itself, based on an invariant measure,
it makes no sense to apply it here.

Though it appears natural from the features of the map that it might be conjugated
to the full 3-shift, the construction of the conjugacy follows from estimates involving
arbitrarily large iterates of the map and its inverse. On the other hand, since the map is
not expansive at the limit set, the existence of equilibrium states does not follow easily
from the standard arguments of upper semi-continuity of the metric entropy.

We refer the reader to Hirsch, Pugh and Shub’s book [9], for the classic theory of
invariant manifolds, and to Bowen’s book [5], for the basic theory of equilibrium states
in the uniformly hyperbolic case. Recall that an equilibrium state associated to a Hölder
continuous potential ϕ is an invariant probability measure that maximizes the metric
pressure associated to ϕ, see also the next subsection.

For non-uniformly expanding maps, it was proved in [13] that there are equilibrium
states associated to almost constant Hölder continuous potentials. In [2], the same is
obtained for small random perturbations of such maps.

Notice that the Sinai-Ruelle-Bowen measures (SRB measures) are equilibrium states
associated to (minus log of) the Jacobian of the system in the unstable direction. In that
direction, there are abundant examples in the literature where those measures are studied
for non-uniformly hyperbolic systems; see [1], [4], [3], [11], among others. In the specific
case of internal (heteroclinic) tangencies such as the ones we study, a class of codimension
two bifurcating maps is provided in [7], for which there exist SRB measures.

About uniqueness of the equilibrium state, we mention that this result, in the context
of non-uniformly hyperbolic systems, is far from obvious. For instance, in the classical
Pomeau-Manneville example (see [16]), the lack of hyperbolicity of the system yields to
the existence of two ergodic equilibrium states for the potential ϕ studied there. It could
be that, for some special potentials, the presence of the homoclinic tangency would cause
the loss of uniqueness of such special measures. It turns out that, in the special place of
the boundary of the uniformly hyperbolic dynamical systems occupied by the maps that
we study here, that sort of ergodic bifurcation does not occur.

1.1 Statement of the results

We study C2 maps f from the square Q = [0, 1]×[0, 1] into IR2 with a fixed hyperbolic sad-
dle S = (0, 0), whose unstable and stable manifolds have an orbit of homoclinic tangency,
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Figure 1: Invariant manifolds

as in figure 1.
It was proved in [17] that, under certain conditions, the set Λ = ∩n∈ZZf

n(Q) admits,
for points x outside the tangency orbit, an invariant splitting TxM = Es

x ⊕ Eu
x of the

tangent space into stable and unstable directions. Later, in [6], the estimate of the rates
of contraction and expansion in these directions were improved.

Let us assume the notations Q∗ = Q \ {(0, 0)}, Q# = Q \ {(x, y) ∈ Q, xy = 0},
Λ∗ = Λ∩Q∗ \O(Q), where O(Q) is the orbit of homoclinic tangency, and Λ# = Λ∩Q#.
Points in Λ∗ that are not in Λ# go to (0, 0) for forward or backward iterates.

Theorem A For every M in Λ# there exist stable and unstable manifolds W s(M) and
W u(M). Moreover the local manifolds W s

l(M)(M) and W u
l(M)(M) are local graphs from

Ei(M) to Ej(M) where i = u, s and j = s, u, where l(M) is continuous in Λ# and tends
to 0 when M goes to the critical orbit.

Let ϕ : Λ → IR be a Hölder continuous function (we will call such ϕ a potential).
We recall that for any f -invariant probability measure µ, the metric pressure associated
to ϕ is hµ(f) +

∫
ϕdµ, where hµ(f) is the entropy of the measure µ. The quantity

hµ(f) +
∫
ϕdµ is also referred as the ϕ-pressure of the measure µ. A measure µ is said

to be an equilibrium state (for ϕ) if the ϕ-pressure of µ is maximal among all f -invariant
probability measures. In this work we are interested only in probability measures, and
any mentioned measure is assumed to be so, from now on.

Theorem B Given any ϑ-Hölder continuous potential ϕ on [0, 1] × [0, 1], there exists a
unique ergodic equilibrium state µϕ for f , associated to the potential ϕ. Moreover, µϕ

gives positive weight to any open set that intersects Λ

The existence and uniqueness of the equilibrium state associated to ϕ will follow from
a finite-to-one and Hölder continuous semi-conjugacy between the full 3-shift and Λ.

1.2 Structure of the paper

In section 2 we give the precise definition of the map f and recall some results about its
(non-uniform) hyperbolicity. In section 3 we define a metric adapted to the geometrical
features of the system. It is also proved there that the map acts in the balls of this metric
in a “Markovian” way. This fact is used later to define a hyperbolic dynamics F , based
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on f (section 4), and to prove a version of the invariant manifolds theorem for F and
f (section 5). Also in section 5, we provide some extra properties of the foliations, as
the Hölder regularity of the hyperbolic splitting (which is well-known in the uniformly
hyperbolic case). In section 6 we show that f is not expansive and prove that there
exists a Hölder continuous finite-to-one semi-conjugacy from the full 3-shift to f . As a
consequence, we obtain the existence and uniqueness of an equilibrium state for any given
Hölder continuous potential ϕ.

2 Horseshoes with internal tangencies

In this section we introduce, in a more precise way, the class of maps that we are going
to work with. We define the smooth maps f of the square Q into IR2, depending on three
parameters, c, λ, and σ that admit extensions to the whole plane as smooth diffeomor-
phisms, having the non-wandering set Λ(f) contained in Q (we omit in the notation the
dependence on the parameters).

For each allowed choice of the three parameters satisfying some open conditions, the
map f is transitive and has a homoclinic tangency associated to the fixed hyperbolic
saddle (0, 0), which is accumulated by periodic points of the system (we call such a
homoclinic point an internal tangency). These maps where first introduced in [17], where
some results where obtained for the unfolding of those internal tangencies, and also some
properties were found for the map f . In [6] it was shown that the return map to the
neighborhood of the internal tangency has nice hyperbolic properties, for instance, the
Lyapunov exponents are bounded away from zero.

After introducing the map f , also in this section, we recall the construction of the
hyperbolic cone fields for points in Λ outside the orbit of the tangency (again, we omit
the dependence on f), and improve some of the estimates on the size of the cones, in order
to obtain more accurate bounds for the angles between the stable and unstable directions
in each point.

All of the results here are global, so we need some global control on the region looked
at. The computations here use very strongly the definition of the map, we need precise
conditions for the first approximation to the problem, but, once it is done, standard
methods allow the extension to nearby maps to be done very naturally.

2.1 The map f

Let λ < 1/3, σ > 3. Let c > 0 be large, some precise conditions on its size are stated
along the way. We construct a one-to-one differentiable map f from Q into IR2 satisfying
the following conditions (see Figure 2):

a) f(x, y) = (λx, σy), if 0 ≤ y ≤ σ−1 (region R1).

b) f(x, y) = (λx+ (1 − λ), σy − (σ − 1)) if 1 − σ−12/3 ≤ y ≤ 1 (region R5).

c) There exists a horizontal strip, named region R3, contained in [0, 1] × [1/3, 1], de-
pending on c, which is mapped affinely in a vertical strip, parallel to the image of
the region R5. The derivative of f in points of this region is

Df(x, y) =

(
−λ 0
0 −σ

)
.
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d) Points of Q which are between R1 and R3 (region R2) are mapped outside Q.

e) There exists, between R3 and R5, a region R4, bounded by two disjoint curves of
the form {y = ψ(x) : x ∈ [0, 1]}, in which the map is not affine, and in this region
we have:

i) The top and bottom sides of R4 are mapped into R2, outside the image of R1.

ii) f [{(0, y) : y ∈ IR} ∩R4] is contained in the graph of the map f0(x) = c(x−q)2,
with ‖∂f

∂y
(0, y)‖ ≥ σ, where q ∈ (2/3, 1)

iii) For every x0 in [0, 1], f [{(x0, y) : y ∈ IR} ∩ R4] is contained in the graph of the
map fx0

(x) = c(x− q)2 − λx0, with
〈
∂f

∂y
(x, y),

∂f

∂x
(x, y)

〉
= 0

and

‖∂f
∂x

(f−1(q, 0))‖ = λ.

Notice that we want that the image of [{(0, y) : y ∈ IR} ∩ R4] does not intersect
the right side of Q.

f) Points between R3 and R5 which are outside R4, are mapped inside region R2 with
second coordinate greater than σ−1. We just ask the map to be smooth at this
points, and globally one-to-one.

In Figure 2, R′
i = f(Ri) for i = 1, . . . , 5. Notice that f can be extended to IR2 in such

a way that (0, 0) is a hyperbolic fixed point, the left side and the bottom side of Q are
contained, respectively, in its unstable and stable manifolds. That implies that Q = (q, 0)
is a point of homoclinic tangency, whose pre-image we denote by T = (0, t).
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Figure 2: The map f

These conditions are compatible provided c is big enough, and a precise definition
of f in region R4 is given in [17]. It is also proved there that, for c big enough, a one
parameter family of maps that unfolds generically the homoclinic tangency (q, 0), crosses
the boundary of the set of uniformly hyperbolic systems at f . That also happens for an
open set of nearby families.
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Remark 1. For future uses, we notice that f|R4
= Ψ ◦ Γ, where Γ(x, y) = (λx, σ(y − t))

and Ψ do not depend on λ and σ.

2.2 Hyperbolic cone fields and estimates of angles

Consider the foliation F , of f(Q), whose leaves are images of vertical lines in Q by the
map f . The leaves of F are vertical in the regions R′

1, R
′
3 and R′

5, and parabolic in region
R′

4. For a point M in this last region, define EP(M) the tangent line at M to the parabola
that contains this point.

Remark 2. Notice that the biggest value (in modulus) that can be achieved for the slope
of EP(M) in the region R′

4 ∩ R1 is equal to 2
√
c(λ+ σ−1). This slope is achieved at

the intersections of the lowest parabolic leaf of F and the line {(x, σ−1) : x ∈ IR}. The
horizontal distance for these two points is 2c−1

√
λ+ σ−1.

Due to the linear features of f in most of its domain, the only possible difficulties that
can appear to construct a hyperbolic cone field do so close to the tangency points. In
order to approach directly this main difficulty, we assume that

2
√
c(λ+ σ−1) < arctanπ/10, (1)

increasing σ and decreasing λ, if necessary. Along the way we assume some lower bounds
for the value of c, and we automatically change λ and σ in order to keep this property.
For reasons to be clarified later, we assume those changes to satisfy 0 < b−1 < − lnλ

ln σ
< b,

for some positive b. We also define

A = R′
4 ∩R1 \ {Q},

a region containing a point of the orbit of tangency, that will be looked at in more details
throughout this paper.

We now define a unstable cone field in A, by assigning for each M in this set a cone
Cu(M), in the tangent space to IR2 at M = (x+ q, y). We recall that the angle α between
the horizontal direction and EP(M) satisfies tanα = 2cx, and put

Cu(M) =

{
(u, v) ∈ IR2 :

|u|
|v| ≤

χ0

2c|x|

}
, (2)

where χ0 > 1 is a constant to be precise later. The cone Cu(M) is centered at the vertical
direction, and, since χ0 > 1, it contains in its interior the line EP(M).

Lemma 2.1. Let n be the first positive integer such that fn(M) = M ′ ∈ A. Then
Dfn

M(Cu(M)) ⊂ Cu(M ′), and ||Dfn
M(v)|| ≥ √

σ
n||v||, for all v ∈ Cu(M). If Cs(M) is the

closure of the complement of Cu(M), (the stable cone at M), we also have ||Df−n
M (v)|| ≥√

λ
−n||v||, for all v ∈ Cs(M).

Proof. Let us set M ′ = (x′ + q, y′). In order to prove the lemma, let us do some estimates
on the value of n. Notice that, before the forward iterates of M are in position to return
to A, they need to leave the region [0, 1] × [0, 1

3
]. That gives us

σny ≥ σn−1y ≥ 1

3
.
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Since y = cx2 − λx0, where 0 ≤ x0 ≤ 1 is the first coordinate of f−1(M), we have

σncx2 > σny >
1

3
. (3)

In order to have fn−1(M ′) in A, we need

λ−n+1x′0 ≥
1

3
,

where 0 ≤ x′0 ≤ 1 is the first coordinate of f−1(M ′). Since 0 ≤ y′ = cx′2 − λx′0, we have
that

λ−ncx′
2
> λ−n+1x′0 >

1

3
(4)

Those two estimates for the minimum number of iterates give us that

n ≥ max

{
ln 1

3cx′2

lnλ−1
,
ln 1

3cx2

ln σ

}
. (5)

Now we apply the derivative of fn at the point M to the vectors of the cone Cu(M). Since
the map is linear for the n− 1 first iterates, we have that

Dfn−1
M (Cu(M)) =

{
(u, v) ∈ IR2 :

|u|
|v| ≤

(
λ

σ

)n−1
χ0

2c|x|

}
,

which is a vertical cone, at the tangent space to IR2 at the point f−1(M ′). This means,
together with the definition of f in R4, that Dfn

M(Cu(M)) is a cone centered at the line
EP(M ′) such that the oriented angle γ(M ′) between its border lines and EP(M ′) satisfies

| tanγ(M ′)| <
(
λ

σ

)n
χ0

2c|x| . (6)

Define δ(M ′) = arctan 2|x′|c
χ0

(the width of the stable cone at M ′, see figure 3(b)). First

we set χ0 = 4, such that we have tan δ(M ′) = 1/4| tanα(M ′)|.
Remark 3. For future purposes, we want to show that γ is small enough, not only to
guarantee that Dfn

M(Cu(M)) ⊂ Cu(M ′), but also that

tan δ ≤ 1

4
| tanα| ≤ 3

4
| tanα| ≤ tan (|α| − |γ|) ≤ tan (|α| + |γ|) ≤ 6

5
tan |α|, (7)

and

tan(|α| − |γ| − |δ|) ≥ 1

2
| tanα|. (8)

Notice that (7) and (8) hold if

|γ(M ′)| < arctan
6 tan |α(M ′)|

5
− |α(M ′)|. (9)

Since we are considering |α(M)| < π/10 for all M ∈ A (see (1)), there exists a constant
χ > 0 such that the condition (9) holds if tan |γ| < χ tan |α|.
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Again, to have this condition, by (6) and the choice χ0 = 4, it is sufficient to have

(
λ

σ

)n
2

c|x| < χ tan |α(M ′)| = χ2c|x′|.

that gives us (
λ

σ

)n

< χc2|x′||x|.

Using (5), we find that

(
λ

σ

)n

≤ (3cx′
2
)1− ln σ

ln λ (10)

and

(
λ

σ

)n

≤ (3cx2)1− ln λ
lnσ (11)

Considering that 0 < b−1 < − ln λ
ln σ

< b, c can be assumed to be > 1, and analyzing the two
cases |x| ≤ |x′| and |x′| < |x|, it is enough to have

(3cx2)1+1/b < cχx2 (12)

for all |x| < λ < 1. We assume that c is big enough to make valid this relation.
To show that the vectors inside the unstable cone Cu(M) grow, by the action of Dfn

M ,
by a factor of at least

√
σ

n
, just recall that, if v = (v1, v2) ∈ Cu(M), then we have

‖v‖ ≤
√

4
c2x2 + 1|v2| and ‖Dfn

Mv‖ ≥ σn, giving us

‖Dfn
Mv‖

‖v‖ ≥ σnc|x|√
4 + c2x2

=
σn/2(σn/2c|x|)√

4 + c2x2
>

√
c

18
√

2
σn/2 > σn/2, (13)

where the last inequalities come from (3), the fact that |x| < c−1
√
λ+ σ−1 < 2/c and the

fact that c can be chosen big. The computations for the vectors inside the stable cones
are analogous; they give another lower bound (of the same kind) for c.

Now we extend the unstable cone field Cu to the whole set Λ: for a point M ∈ Λ,
consider the set

I(M) = {nk ∈ ZZ : fnk(M) ∈ A}
which is the set of “visits” of the orbit of M to A, where the cone field is already defined.
Based on the fact that

Dfnk+1−nk(Mnk
)(Cu(Mnk

)) ⊂ Cu(Mnk+1
),

we choose, for Mi = f i(M), nk < i < nk+1, cones Cu(Mi) such that Df(Mi−1)(Cu(Mi−1))

is contained in
◦

Cu(Mi) ∪{(0, 0)}.
If I(M) has a first element nf , Mnf

= (xnf
, ynf

), we define, for i′ such that xi′ > 1/3
and xi < 1/3 for i′ < i < nf − 1,

Cu(Mi′) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

}
.
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Due to the linear features of f at Mi = (xi, yi), we have that

Dfnf−i′−1Cu(Mi′) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

λnf−i′−1

σnf−i′−1

}
,

where
1√
3

λnf−i′−1

σnf−i′
≤ 1√

3
(3cxnf

2)1− ln σ
ln λ .

That, together with (12), give us

1√
3

λnf−i′−1

σnf−i′
≤
cχx2

nf√
3

< χ2c|xnf
|,

and it is enough to have Dfnf−i′Cu(Mi′) included in Cu(Mnf
). Now, for i < i′, we choose

Cu(Mi) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

}
,

and for i′ ≤ i < nf , we choose cones Cu(Mi) such that Df(Mi−1)(Cu(Mi−1)) is contained

in
◦

Cu(Mi) ∪{(0, 0)}.
If I(M) has a last element nl, we take i′ ≥ nl the first integer such that σi′−nlynl

> 1/3.
Arguing as before, we set

Cu(Mi′) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

}
,

and combine (12) with the fact that cχx2
nl
< σ−1 < 1/

√
3, give us that Df i′−nfCu(Mnl

)
is included in Cu(Mi′). Now, for nl < i ≤ i′, we choose cones as before(satisfying the
inclusion condition for each iterate), and for i > i′, we choose

Cu(Mi) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

}
,

If I(P ) is empty, we simply set

Cu(Mi) =

{
(u, v) ∈ IR2/

|u|
|v| ≤

1√
3

}
.

That construction provides unstable directions Eu(P ) for each point P whose back-
ward iterates are always inside Q, and stable directions Es(P ) for all points P whose
forward iterates are always in Q. Since the unstable direction Eu(.) is never horizon-
tal, and the stable direction Es(.) is never vertical, we can fix two unitary vector fields
eu(.) and es(.) such that 〈eu(.), (0, 1)〉 > 0 and 〈es(.), (1, 0)〉 > 0. We have, then, that
Dfn,−n

P eu,s(P ) are parallel to eu,s(fn,−n(P )).
To finish this section, we point out that future changes in the parameter c will keep

valid the conditions (12) and (13), as well as the correspondent ones for the stable case.
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3 Geometric properties of the map f

In this section we study some geometrical and dynamical features that arise from the
definition of the map f .

Let us first state some definitions and notations. We continue to use, for n ∈ ZZ and
M ∈ Λ, the notation Mn for the point fn(M), as in the end of section 2. We say that M
is in escape phase if there exists a positive integer n such that M−n ∈ A and M−i ∈ R1

for all integer 0 ≤ i < n. Analogously, M is in approach phase if there exists a positive
integer n such that Mn ∈ A and Mi ∈ R′

1 for all 0 < i < n. If M = (x, y) is in A we set
l(M) := |x− q|. If M is in Q \ A , we set l(M) := supξ∈A l(ξ).

Recall that, by definition, the images by the map f of the vertical lines intersected to
A are pieces of parabolas that will be called local parabolas in A. If P and P ′ are two
local parabolas, the closure of the region in A between these two parabolas will be called
the parabolic hull of P and P ′.

We denote by IB(M, ε) the ball of center M and with radius ε for the Euclidean metric
||.||. For M in Λ, let |v|M = max(|vu|, |vs|), where v = vue

u(M) + vse
s(M). We denote by

B(M, ε) the polygonal ball of center M and radius ε for this metric |.|M .

Lemma 3.1. There exists a positive constant χ1 such that for every M in A we have

χ1.l(M)|.|M ≤ ||.|| ≤ 2|.|M . (14)

Proof. Let v be any vector in IR2. We set v = vue
u(M) + vse

s(M). Then we have

||v|| ≤ |vu|.||eu(M)|| + |vs|.||es(M)|| ≤ 2|v|M .
Now, we have eu(M) = cos θes(M) + sin θes

⊥(M), where θ is some real number and es
⊥

is the unitary vector perpendicular to es(M) which preserves the orientation of IR2. For
convenience we do the case |v|M = |vs|; the other case is similar. Thus, we have

||v||2 = (vs + vu cos θ)2 + (vu sin θ)2

= v2
s + v2

u + 2vsvu cos θ

≥ v2
s + v2

u − 2|vu|.|vs| cos θ

≥ v2
s

(( |vu|
|vs|

)2

− 2
|vu|
|vs|

. cos θ + 1

)

≥ |v|2M sin2 θ. (15)

Due to the definition of A, we have | sin θ| ≥
√

3
2
|θ|. This yields to the lower bound in (14)

for some constant χ1.

For M in A, define its escape time as the minimal positive integer n such that fn(M)
does not belong to R1, and the approach time as the minimal positive integer n such that
f−n(M) /∈ R′

1.

Remark 4. Let M be in A, n1 and n2 be its escape and approach times. Then, fol-
lowing the proof of lemma 2.1, we have that σn1−1cl2(M) ≥ 1

3
and λ−n2+1cl2(M) ≥ 1

3
.

An important consequence of this fact is that, for every 0 < ρ ≤ 1, the length of the
polygonal balls fn1(B(M, ρl(M))) and f−n2(B(M, ρl(M))), respectively in the vertical
and horizontal direction is at least ρ

4
.
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Figure 3(a) represents a polygonal ball centered in a point M ∈ A at the right side of
the line x = q. Notice that the right and left sides of the polygonal ball are parallel to
eu(M). If the radius l is small, these sides approximate the tangent of the local parabola
which contains M . Let S0(M, l) and S2(M, l) be the bottom and top sides of B(M, l),
respectively, and S1(M, l) be the intersection of B(M, l) with the line parallel to Es(M)
through M . For Si(M, l) as before, and 0 < ρ ≤ 1, let Si(M, l)(ρ) ⊂ Si(M, l) denote the
segment with radius ρ.l and the same center as Si(M, l).

C (M) e

e

s

u

s

V

V

V

V

1

3

4

2

M

l

l

α

βδ

γ

(a) (b)

Figure 3: polygonal ball and angles

Proposition 3.2. There exists a positive real constant C0 ≤ 1 such that for every M
in A and for every 0 < ρ ≤ 1, if we set l̃(M, ρ) = ρC0.l(M), then, every local parabola

which crosses the segment S1(M, l̃(M, ρ))(1
4
) crosses the two segments S0(M, l̃(M, ρ)) and

S2(M, l̃(M, ρ)).

Proof. For simplicity, we assume the notations l̃(M, ρ) = l̃ and Si(M, l̃(M, ρ)) = Si. Let

V1, . . . , V4 be the vertices of B(M, l̃) named counter-clockwise from the top right one, as
in figure 3. Recall that α is the angle between EP(M) and the horizontal, and γ is the
angle between the vector eu(M) and EP(M) (see figure ??(b)). Due to symmetry, we
assume that M is at the right side of the line x = q, without loss of generality. We
denote by β the angle between the segments Si and the horizontal. For simplicity we set
q = 0. In this new system of coordinates, the family of local parabolas have equation on
the form Y = cX2 − k. Let K be such that, for k = K, the associated parabola is the
local parabola which contains M = (x, y). Notice that, though α is positive, it cannot
be assumed for β. Considering these notations, the coordinates of the points Vi are the
following:

V1 =

{
x1 = x+ l̃(cosβ + cos(α+ γ))

y1 = y + l̃(sin β + sin(α + γ))
, V2 =

{
x2 = x− l̃(cos β − cos(α+ γ))

y2 = y + l̃(sin(α + γ) − sin β)
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V3 =

{
x3 = x− l̃(cosβ + cos(α + γ))

y3 = y − l̃(sin β + sin(α + γ))
, V4 =

{
x4 = x+ l̃(cos β − cos(α+ γ))

y4 = y − l̃(sin(α+ γ) − sin β)

For 0 < k ≤ 1, let V+(k) and V−(k) be defined by

V+(k) =

{
x+ = x+ k.l̃ cos β

y+ = y + k.l̃ sin β
, V−(k) =

{
x−(k) = x− k.l̃ cosβ

y−(k) = y − k.l̃ sin β

In this case we have [V−(k), V+(k)] = S1(k). We denote by P+
k and P−

k the two
local parabolas containing respectively V+(k) and V−(k). We are looking for sufficient

conditions on l̃ and k such that any local parabola which cuts the segment S1(k) also cuts
the segments S2 = [V2, V1] and S0 = [V3, V4]. For this to be satisfied, it is sufficient to
have that P+

k and P−
k cut S0 and S2.

- Sufficient conditions for P+
k ∩ [V2, V1] 6= ∅:

The parabola P+
k crosses [V2, V1] if and only if

{
y1 ≤ cx2

1 − 2cxkl̃ cos β − ck2l̃2 cos2 β + kl̃ sin β −K,

y2 ≥ cx2
2 − 2cxkl̃ cos β − ck2l̃2 cos2 β + kl̃ sin β −K.

This yields to the following system:

l̃(sin(α + γ) + sin β) ≤ 2cl̃x(cos β + cos(α + γ)) + cl̃2(cosβ + cos(α + γ))2

−2cxkl̃ cosβ − ck2l̃2 cos2 β + kl̃ sin β, (16a)

l̃(sin(α + γ) − sin β) ≥ −2cl̃x(cosβ − cos(α + γ)) + cl̃2(cosβ − cos(α + γ))2

−2cxkl̃ cosβ − ck2l̃2 cos2 β + kl̃ sin β. (16b)

Because 2cx = tanα, (16a) is equivalent to

sin(α + γ) + (1 − k) sin β ≤ tanα((1 − k) cosβ + cos(α+ γ))

+cl̃[(cos(α+ γ) + cos β)2 − k2 cos2 β]. (17)

Let us assume that k ≤ 1. Then the second term in the right side of (17) is positive.
Moreover (7) implies tanα− tan β ≥ 3

4
tanα. Therefore, it is sufficient to have

cos(α + γ)
tan(α+ γ) − tanα

cosβ
≤ 3

4
(1 − k) tanα,

to get (16a). Again (7) together with the fact that cosβ ≥ 1
2

imply that (16a) is satisfied

if k ≤ 7

15
. From now till the end of this step we assume that k satisfies this last condition.

Equation (16b) is equivalent to

cl̃[
(cosβ − cos(α + γ))2

cos β
−k2 cosβ]−cos(α+γ)

tan(α + γ) − tanα

cosβ
≤ (1+k)(tanα−tan β).



3. Geometric properties of the map f 13

Now we have cosβ ≥ cos(α + γ); using again inequalities (7), (16b) holds if

cl̃ ≤ 3

4
tanα− 1 × 2 × 1

4
tanα. (18)

Hence, (16b) is satisfied if l̃ ≤ 1

4
l(M).

- Sufficient conditions for P+
k ∩ [V3, V4] 6= ∅:

The parabola P+
k crosses [V3, V4] if and only if

{
y3 ≥ cx2

3 − 2cxkl̃ cos β − ck2l̃2 cos2 β + kl̃ sin β −K,

y4 ≤ cx2
4 − 2cxkl̃ cos β − ck2l̃2 cos2 β + kl̃ sin β −K.

This yields to the following system:

−l̃(sin(α + γ) + sin β) ≥ −2cl̃x(cosβ + cos(α + γ)) + cl̃2(cosβ + cos(α+ γ))2

−2cxkl̃ cosβ − ck2l2 cos2 β + kl̃ sin β, (19a)

−l̃(sin(α + γ) − sin β) ≤ 2c−̃lx(cosβ − cos(α + γ)) + c−̃l2(cosβ − cos(α + γ))2

−2cxkl̃ cosβ − ck2l̃2 cos2 β + kl̃ sin β. (19b)

Using the same kind of computations than just above, equation (19a) holds if l̃ ≤ 7

40
l(M).

Equation (19b) is equivalent to

cl̃[k2 cos β− (cos β − cos(α+ γ))2

cosβ
] ≤ (1−k)(tanα−tan β)+cos(α+γ)

tan(α + γ) − tanα

cosβ
.

Assuming, moreover, that k ≤ 1

4
, it is sufficient to have l̃ ≤ 1

2
l(M) to get (19b).

- Sufficient conditions for P−
k ∩ [V2, V1] 6= ∅:

Again, P−
k crosses [V2, V1] if and only if

{
y1 ≤ cx2

1 + 2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β −K,

y2 ≥ cx2
2 + 2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β −K.

This yields to the following system:

l̃(sin(α + γ) + sin β) ≤ 2cl̃x(cos β + cos(α + γ)) + cl̃2(cosβ + cos(α + γ))2

+2cxkl̃ cos β − ck2l̃2 cos2 β − kl̃ sin β, (20a)

l̃(sin(α + γ) − sin β) ≥ −2cl̃x(cosβ − cos(α + γ)) + cl̃2(cosβ − cos(α + γ))2

+2cxkl̃ cos β − ck2l̃2 cos2 β − kl̃ sin β. (20b)

Analogously, equation (20a) holds if l̃ ≤ 56

5
(M).

In the same way, equation (20b) holds if l̃ ≤ 1

8
l(M).
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- Sufficient conditions for P−
k ∩ [V3, V4] 6= ∅:

Finally, P−
k crosses [V3, V4] if and only if

{
y3 ≥ cx2

3 + 2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β −K,

y4 ≤ cx2
4 + 2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β −K.

This yields to the following system:

−l̃(sin(α + γ) + sin β) ≥ −2cl̃x(cos β + cos(α + γ)) + cl̃2(cosβ + cos(α + γ))2

+2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β, (21a)

−l̃(sin(α + γ) − sin β) ≤ 2cl̃x(cosβ − cos(α + γ)) + cl̃2(cosβ − cos(α + γ))2

+2cxkl̃ cosβ − ck2 l̃2 cos2 β − kl̃ sin β. (21b)

Equation (21a) is equivalent to

cl̃[
(cosβ + cos(α + γ))2

cosβ
−k2 cos β] ≤ (1−k)(tanα−tan β)−cos(α+γ)

tan(α + γ) − tanα

cosβ
.

Then it is sufficient to have

4cl̃ ≤
(

9

16
− 2

5

)
tanα,

to get the above inequality. Thus (21a) holds if l̃ ≤ 13

160
l(M).

Analogously, equation (21b) holds if l̃ ≤ 4l(M). Now choose C0 such that the bounds

above are valid for l̃ ≤ C0l(M) for ρ = 1. Then they also hold for 0 < ρ < 1, and the
proof is complete.

We say that the parabolas P− and P+ u-cross the ball B(M, l̃(M, ρ)).
For future uses, we need to estimate the size of the balls for which the local parabolas

through its points u-cross B(M, l̃(M, ρ)). Keeping the notations in proposition 3.2, we
state the following.

Proposition 3.3. There is 0 < ε0 ≤ 1, uniform in A, such that, if P ∈ B(M, ε0l̃(M, ρ)),

then the local parabola through P u-crosses the ball B(M, l̃(M, ρ)).

Proof. Define N1, . . . , N4 be the vertices of B(M, ε0l̃(M, ρ)), named analogously to
V1, . . . , V4. Due to proposition 3.2, it is enough to show that the local parabola through
P crosses S1(M, l̃(M, ρ))(1/4), whose extremes are V− and V+. For this, we show that
the local parabolas through N1, . . . , N4 cross [V−, V+]. The local parabola through P is
contained in the minimum parabolic hull containing N1, . . . , N4, so it must cross [V−, V+]
as well.

V+ =

{
x+ = x+ 1

4
l̃ cosβ

y+ = y + 1
4
l̃ sin β

, V− =

{
x− = x− 1

4
l̃ cosβ

y− = y − 1
4
l̃ sin β

N1 =

{
x1 = x+ ε0l̃(cosβ + cos(α+ γ))

y1 = y + ε0l̃(sin β + sin(α + γ))
, N2 =

{
x2 = x− ε0l̃(cosβ − cos(α + γ))

y2 = y + ε0l̃(sin(α+ γ) − sin β)
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- Sufficient conditions for P1 ∩ [V−, V+] 6= ∅:
The parabola P1 crosses [V−, V+] if and only if

{
y+ ≤ cx2

+ − 2cx(1/4)l̃ cosβ − c(1/4)2l̃2 cos2 β + (1/4)l̃ sin β −K1,

y− ≥ cx2
− − 2cx(1/4)l̃ cosβ − c(1/4)2l̃2 cos2 β + (1/4)l̃ sin β −K1.

where K1 = cx2
1 − y1. This yields to the following system:

(1/4 − ε0)(sin β) ≤ (1/4 − ε0)(tanα cosβ) +

(1/16)cl̃(cos2 β − 16ε2
0(cosβ + cos(α + γ))2)

+ε0 sin(α + γ) − ε0 tanα cos(α + γ) (22a)

(1/4 + ε0)(tanα cosβ) ≥ (1/4 + ε0) sinβ + ε0 sin(α+ γ) − ε0 tanα cos(α + γ)

+(1/16)cl̃(cos2 β − 16ε2
0(cosβ + cos(α + γ))2) (22b)

Since cos β > 1/2, and picking ε0 small enough, we have

cos2 β − 16ε2
0(cosβ + cos(α + γ) ≥ cos2 β − 16ε2

0(1 + cos β)2 ≥ 0 (23)

To get (22a), it is sufficient to have

cos(α + γ)ε0

(
tanα− tan(α + γ)

cosβ

)
≤ (1/4 − ε0)(tanα− tanβ), (24)

which is true, as soon as ε0 < 15/92 (see 7). To get (22b), it is sufficient to have

(
3

16
+

7

20
ε0

)
tanα ≥ 1

16
cl̃.

Again, see expression (7), and consider that tanα = 2cx and l̃ = ρC0l(M) = ρC0x. It is
always true, since 0 < C0, ρ ≤ 1.

The computations for the parabolas through the points N2, . . . , N4 are analogous, and
give other upper bounds to the size of ε0.

Let M be in A. For symmetric reasons we also can assume that M is at the right side
of the homoclinic point Q. Consider the ball B(M, l), for some positive l, and its vertices
Vi = (xi, yi) as before. The angle α is positive, but that cannot be assumed for β. Since
function cos(.) decreases close to 0 and the function sin(.) increases close to 0, then, if β
is positive, we must have

x3 ≤ x2 ≤ x4 ≤ x1 and y3 ≤ y4 ≤ y2 ≤ y1.

Moreover, | tanβ| is much smaller than tanα and tan(α− |γ|), and thus, if β is negative
we must have

x3 ≤ x2 ≤ x4 ≤ x1 and y4 ≤ y3 ≤ y1 ≤ y2.

We set dv(M, l) = min(y1 − y3, y2 − y4) and dh(M, l) = x1 − x3. Then dh(M, l) is the
smallest width of a vertical stripe Sv(M, l) containing the polygonal ball B(M, l), and
dv(M, l) is the largest height of a horizontal open stripe Sh(M, l) containing M but no
edges of B(M, l). Let R(M, l, l′) be the rectangle defined by the closure of the intersection
of Sh(M, l′) and Sv(M, l).
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Figure 4: polygonal ball and angles

Definition 3.4. If n is the first positive number such that Mn ∈ A, we say that
fn(R(M, l, l′)) u-crosses the ball B(Mn, l

′′) if the sides of the connected component of
fn(R(M, l, l′)) ∩Q which contains Mn are parabolas that u-cross B(Mn, l

′′).

Proposition 3.5. If λ and σ−1 are sufficiently small, there exists η > 0 such
that, for any M ∈ A and Mn its first return to A, for any ρ ≤ 1, if Mn ∈
B(M ′, ηε0ρC0l(M

′)) then fn(R(M, ρC0l(M), ε0ρC0l(M)) u-crosses B(M ′, ρ.C0.l(M
′))

and B(M ′, ε0ρ.C0.l(M
′)) (where ε0 is given in proposition 3.3).

Proof. By definition of the map f , for k = 0 to n − 1, it is linear at Mk. Consider the
notations l̃ = ρC0l(M), l̃′ = ρC0l(M

′), dv = dv(M, l̃) and dh = dh(M, l̃). Notice also that

dv(M, ε0l̃) = ε0dv and dh(M, ε0l̃) = ε0dh. We have dv ≥ 2l̃(sin(α − |γ|) − | sin β|). Let
us assume, for simplicity that γ and β are positive. Applying the mean value theorem to
the function sin(.), and recalling that α, γ and β are small, we have

sin(α− γ) − sin β ≥ 1

2
(α− γ − β).

Moreover, for small positive t, t = arctan ◦ tan t. Studying the derivatives of t 7→ arctan t,
we get

α− γ − β ≥ 1

2
(tan(α− γ) − tanβ).

Then, (7) finally yields to sin(α− γ) − sin β ≥ 1

8
tanα, and

dv ≥ 1

2
ρ.C0.cl

2(M). (25)

By remark 4, and the fact that the escape time of M is less than or equal to n − 1, we

find that σn−1dv >
1

6
ρ.C0. It means that the image by fn−1 of the rectangle R(M, l̃, ε0l̃)
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is a rectangle with height larger than
1

6
ε0ρ.C0 whose center is Mn−1. The width of this

rectangle is λn−1dh, and we also have dh ≤ 4l̃(M) = 4ρ.C0.l(M).
Now consider the segment S1(M

′, ρC0l(M
′))(1/4) and its end points that we call V ′

−
and V ′

+. Let P ′
− and P ′

+ be the local parabolas through these points. Then M ′
−1 lies

between the two pre-images of those curves, which are vertical lines. We denote by D+

and D− the horizontal distance between M ′
−1 and the two vertical lines.

For each i = +,−, the distance di equals
1

λ
|K(M ′) − K(M ′

i)|, where K(P ) is the

constance such that the equation of the local parabola which contains P is Y = cX2 −
K(P ). Therefore we get for lower bound

Di ≥
l̃(M ′) cosβ

4λ
| tanα′ − tanβ ′ − cl̃(M ′)

4
cosβ ′|.

Using (7) and others estimates for the angles, we get Di ≥
5

32
c.l(M ′).̃l(M ′).

Now, notice that, if Mn ∈ B(M ′, ηε0ρC0l(M
′)), we have that the horizontal dis-

tance between Mn and M ′ is less than 2ηε0ρC0l(M
′). This gives us l(M ′) ≥ l(Mn) −

2ηε0ρC0l(M
′), and l(Mn) ≥ l(M ′) − 2ηε0ρC0l(M

′), and we have

l(Mn)

2
≤ l(M ′) ≤ 2l(Mn), (26)

since we can ask η to be smaller than 1/4.
Now we must estimate the horizontal distance, d, between Mn−1 and M ′

−1. Assuming
the usual notation, let V1, . . . , V4 be the vertices of B(M ′, ηε0ρC0l(M

′)). Each Vi belongs
to a local parabola with equation y = cx2 −Ki, and the local parabola through M ′ has
equation y = cx2 −K ′. Then d is the minimum value of di, where di = (1/λ)|Ki −K ′|,
for i = 1, . . . , 4. We have that

di ≤ ηε0l̃
′[cos β ′| tanα′ − tan β ′| + cos(α′ + γ′)| tanα′ − tan(α′ + γ′)|

+ηcl̃′(cosβ ′ + cos(α′ + γ′))2].

Now, recall that tanα′ = 2cx′ = 2cl(M ′). Then (7) gives us di ≤ 10ε0ηl̃
′cl(M ′), if η

is small enough. To be sure that fn(R(M, l̃, ε0l̃) u-crosses B(M ′, ε0l̃
′) and B(M ′, l̃′), we

will put conditions to have

d+ λn−1dh ≤ D.

This fills the conditions for u-crossing in the stable direction for both balls, and is achieved
if we have

4λn−1l̃ + 10ηε0l̃
′cl(M ′) ≤ 5

32λ
ρ.C0.l

2(M ′)ε0,

that means

4l(M) ≤ λ−n+1l2(M ′)ε0[
5

32
− 10ηc].

By remark 4, we have that λ−n+1l2(Mn) ≥ 1/3, and due to (26), it is enough to choose
η such that 10ηc < 1/32, and to have
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4l(M) ≤ ε0

3 × 32
≤ λ−n+1ε0

l2(Mn)

4

1

8
≤ λ−n+1l2(M ′)

(
5ε0

32
− 10ε0ηc

)
.

For the estimates in the unstable direction, recall that (14) proves that the maximal
vertical length for the ball B(M ′, ρC0l(M

′)) is less than 4l(M ′). Proposition 3.2 proves

that the image of R(M, l̃, ε0l̃) by fn has the desired vertical length provided that

σn−1 ε0

2
ρ.C0.cl

2(M) ≥ 4ρ.C0.l(Mn) + 4η.ε0.ρ.C0.l(Mn). (27)

As ε0 ≤ 1 and we also need some η ≤ 1,the previous inequality is achieved if we have

16l(M ′) ≤ ε0

6
≤ ε0σ

n−1cl2(M)

2
,

recall remark 4.
Both conditions will hold if l(ξ) is small enough for every ξ in A. Remark 2 implies

that l(ξ) ≤ c−1
√
λ+ σ−1, so the result holds for λ and σ−1 small enough.

Corollary 3.6. Under the conditions of proposition 3.5, fn(R(M, l, l) u-crosses the ball
B(Mn, ρ.C0.l(Mn)).

As a consequence of corollary 3.6, we get that the image by fn of the polygonal ball
B(M, ε0ρC0) overlaps the ball B(Mn, ρC0) in the unstable direction but is “inside” in the
stable direction, in the sense that it does not cross the lateral sides of B(Mn, ρC0).

4 Kergodic charts

In this section we define a set of local charts, that we call kergodic charts. These charts
are directly inspired on the so-called Lyapunov charts (in Pesin’s Theory) and helps us to
work with a new map F , with good rates of hyperbolicity. Differently from the Lyapunov
charts, the kergodic charts preserve some continuity, in the sense that their domains vary
continuously with the points. In the next subsections we study the three main ingredients
needed to define the charts: the induced map F , the polygonal balls, and the control on
the distortion of the derivatives.

4.1 Definition of the map F

The lack of non-uniform hyperbolicity for the system in Q is due only to the presence
of a single orbit of homoclinic tangency. Away from that orbit, the system is, in some
sense, uniformly hyperbolic. The map F is defined taking advantage of this fact, as some
iterate of the map f , depending on the point, in such a way that the hyperbolic estimates
hold for the first iterate of F . This idea is the heart of the Lyapunov charts. However
the Lyapunov charts depend on the point only in a Borel way, not being continuous, in
general. The key point in our case is that the first return to the region A is, in fact,
uniformly hyperbolic.

Let F be the map defined as follows:

- if M belongs to R3 ∪R5, then F (M) = f(M);
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- if M belongs to R4 ∩ (R′
3 ∪ R′

5), then F (M) = f(M);

- if M belongs to A and fn(M) belongs to R3 or R5, where n is the escape time for
M , then F (M) = fn(M),

- if M belongs to A and fn(M) belongs to R4, where n is the escape time for M , then
F (M) = fn+1(M),

- if M belongs to A∩([0, 1] × {0}) then we set F (M) = (0, 0). We also set F ((0, 0)) =
(0, 0)

Notice that F is not defined for points in R1 ∩ R′
1, except for (0, 0). In fact, the other

points in that region belong to orbits of points in the rest of the square, and the results
of this section apply to them, by iteration of f . We also have that F is not injective only
at the pre-image of (0, 0), being one-to-one in the rest of the domain. For convenience
we denote by QF , the domain of the map F , and use the notations Q∗

F = QF ∩ Q∗,
Q#

F = QF ∩Q#, ΛF = Λ ∩QF , Λ∗
F = ΛF ∩ Λ∗, and Λ#

F = ΛF ∩ Q#.

4.2 Polygonal us-balls

Now we start to define the us-balls. The definitions takes into account the number of
iterates in the future and in the past that a point needs before it visits the region A.

Let ρ ∈ (0, 1). For M in A, we denote by Bus(ρ) the polygonal ball B(M, ρ.C3.l(M)),
where C3 is a constant to be estimated later. If M ∈ Λ\A is between two visits of its orbit
to A, then let k and p be the smallest positive integer satisfying M−k ∈ A and Mp ∈ A.
We set

Bus(M, ρ) = (B(M, ρ.C3tu(M)) ∩Eu(M)) × (B(M, ρ.C3ts(M)) ∩ Es(M)) ,

where

tu(M)
def
= min(

1

3
, l(M−k)||dfk

M−k
.eu(M−k)||),

and

ts(M)
def
= min(

1

3
, l(Mp)||df−p

Mp
.es(Mp)||).

If M is before the first visit of its orbit to A, that is, if M−k /∈ A for every k ≥ 0 and
there exists a positive integer p such that Mp ∈ A, then we set

Bus(M, ρ) =

(
B(M,

1

3
ρ.C3) ∩Eu(M)

)
× (B(M, ρ.C3ts(M)) ∩ Es(M)) ,

where ts(M) is defined as above.
As the next case, let M be such that Mp /∈ A for every p ≥ 0 and there exists a

positive k such that M−k ∈ A (M is after the last visit of its orbit to A). Then we set

Bus(M, ρ) = (B(M, ρ.C3tu(M)) ∩ Eu(M)) ×
(
B(M,

1

3
ρ.C3) ∩ Es(M)

)
,

where tu(M) is defined as above.
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Finally, if the orbit of M does not visit A, that is, if ∀k ∈ ZZ, Mk /∈ A, we set

Bus(M, ρ) = B(M,
1

3
ρ.C3).

These balls are called the us-balls. For convenience, Bi(M, ρ) will denote the one-
dimensional ball Bus(M, ρ) ∩Ei(M) (i = u, s).

4.3 Dynamic for the us-balls and definition of the kergodic

charts

One of the key points to prove the existence of the invariant manifolds, which is the goal
of the next section, is to control the distortion of the map F̂ of the kergodic charts, to be
defined in this section. Before that, we point out some of the properties of the map F .

• The map F is locally linear, except in the region R4. Thus, by definition of the
us-balls, for every M in R3 ∪R5, the image, by the map F , of the us-ball Bus(M, ρ)
is a polygonal ball which u-crosses the polygonal ball Bus(F (M), ρ); here u-
crossing means that F (Bus(M, ρ)) is of the kind (B(F (M), ρ.C3t

′
u(M)) ∩Eu(M))×

(B(M, ρ.C3t
′
s(M)) ∩ Es(M)), where t′u(F (M)) ≥ tu(F (M)) and t′s(F (M)) ≤

ts(F (M)).

• For the same reason, when M belongs to A and F (M) belongs to R3 or R5, the
image by the map F of the us-ball Bus(M, ρ) is also a polygonal ball which also
u-crosses the polygonal ball Bus(F (M), ρ). In both cases, due to the linearity of F ,
we have F = DF .

• Let M be in A such that F (M) ∈ A. Corollary 3.6 proves that for every C3 ≤ C0,
for every ρ in (0, 1), the image by F of the polygonal us-ball Bus(M, ρ) u-crosses
the polygonal us-ball Bus(F (M), ρ).

The map f is C2 in the compact set R4; thus there exists some constant C4 such
that, for every ξ in R4, ||D2f(ξ)|| ≤ C4 (for the Euclidean norm). Hence, for M ∈ A
with F (M) ∈ A, the relation (14) and the previous discussion prove that there exists
some positive constants C5 = C5(C4, χ1) such that, for every ξ and ξ′ in the connected
component of Bus(M, ρ) ∩ F−1(Bus(F (M), ρ)) which contains M , we have

∣∣DFξ ◦DF−1
Fξ′ − Id

∣∣
F (M)

≤ C5.l
−1(F (M))|F (ξ) − F (ξ′)|F (M). (28)

To see this, just notice that

∥∥∥DFξ ◦DF−1
F (ξ′) − Id

∥∥∥ =
∥∥∥Dff−1(F (ξ)) ◦ Ln−1 ◦ L−n+1 ◦Df−1

F (ξ′) − Id
∥∥∥

=
∥∥∥Dff−1(F (ξ)) ◦Df−1

F (ξ′) − Id
∥∥∥

=
∥∥∥(Dff−1(F (ξ)) −Dff−1(F (ξ′))) ◦Df−1

F (ξ′)

∥∥∥ ≤ C
′

5 ‖F (ξ) − F (ξ′)‖ ,

where L is the linear map L(x, y) = (λx, σy), and since Df and Df−1 are Lipschitz
functions. Applying estimate (14), we get the relation in (28). The constant C5 can be
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chosen to be uniform in Λ#
F , extending to the other cases. We can now use these properties

to define the kergodic charts. We define them in the same way that the Lyapunov charts
are usually defined (e.g. in [12]):

Definition 4.1. We call kergodic charts, the family of embedings ΦM : BM(0, ρ) ⊂ IR2 →
IR2, for M ∈ Λ#

F , satisfying:

(i) ΦM is affine, ΦM(0) = M and DΦM (0) respectively maps IRu def
= IR×{0} onto Eu(M)

and IRs def
= {0}×IR onto Es(M). If v belongs to IRu∪IRs, then |ΦM (v)|M = l(M)||v||.

(ii) The set BM(0, ρ) is defined by Φ−1
M (Bus(M, ρ)); it is provided with the adapted norm

| . |: for v = v1.(1, 0) + v2.(0, 1), |v| = max(|v1|, |v2|).

We call kergodic maps, the family of maps F̂M
def
= Φ−1

F (M) ◦ F ◦ ΦM . The family of maps

F̂−1
M

def
= Φ−1

F−1(M) ◦ F−1 ◦ ΦM will be called the inverse kergodic maps.

We also set Bi
M (0, ρ)

def
= IRi ∩ BM(0, ρ) (i = u, s). The kergodic maps and charts

satisfy the following properties:

1. For any ξ and ξ′ in BM(0, ρ).

1

2
||ΦM(ξ) − ΦM(ξ′)|| ≤ |ξ − ξ′| ≤ 1

χ1

l−1(M).||ΦM (ξ) − ΦM(ξ′)||.

2. For every M in Λ:

2.1 For every v in IRu,
√
σ

k|v| ≤ |DF̂M(v)|, where F (M) = fk(M),

2.2 For every v in IRs, |DF̂M(v)| ≤
√
λ

k|v|, where F (M) = fk(M).

Away from A, when F ≡ f , this follows from the uniform hyperbolicity. In A this
follows from lemma 2.1.

3. For every ξ and ξ′ in the connected component of BM (0, ρ) ∩ F̂−1
F (M)(BF (M)(0, ρ))

that contains 0, we have
∣∣∣F̂M(ξ) − F̂M(ξ′) −DF̂M(0).(ξ − ξ′)

∣∣∣ ≤ C3.C5.|DF̂M(0)(ξ − ξ′)|.

The above inequality follows from (28) and the following estimates:

∣∣∣F̂M(ξ) − F̂M (ξ′) −DF̂M(0).(ξ − ξ′)
∣∣∣ =

∣∣∣∣
∫ 1

0

(DF̂M(t(ξ − ξ′)) −DF̂M(0))(ξ − ξ′)dt

∣∣∣∣

≤ C3C5l(F (M))

l(F (M))
|DF̂M(0)(ξ − ξ′)|.

Notice that if F (M) = fn(M), then f is linear at least in n − 1 iterates. Hence, the
possible distortion is only due to the last iterate, and is uniformly bounded.

Remark 5. When convenient, we consider the balls BM (0, ρ) as subsets of IR2, keeping
the index M to recall that the radius of the balls depend on the point M .
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5 Invariant manifolds and some of their properties

In this section we extend the theory of invariant manifolds and local product structure
to the non-uniformly hyperbolic set Λ∗. The invariant manifolds are constructed first for
the map F , and then extended to f by iteration. Since the hyperbolicity of the splitting
degenerates as one approaches the tangency, the radius of the neighborhood in which the
product structure holds is not uniform in Q. In the last subsection we give some extra
properties for these manifolds.

5.1 The invariant manifolds

Proposition 5.1. There exists a positive real number ρ1 ≤ 1, such that, if we set C3 :=
ρ1.C0 then, for every M in Λ#

F , and for any 0 < ρ ≤ 1, there exists an uniquely defined
pair of curves, W u

ρ (M) and W s
ρ (M), satisfying

- W u
ρ (M) is tangent to Eu(P ) for each P ∈W u

ρ (M) ∩n∈IN F
n(QF );

- W s
ρ (M) is tangent to Es(P ) for each P ∈W s

ρ (M) ∩n∈IN F
−n(QF );

- W u,s
ρ (M) is the graph of a function gu,s

M , from Bu,s(M, ρ) to Bs,u(M, ρ) with Lipschitz
constant smaller than 1/3;

- F (W u
ρ (M)) ⊃ W u

ρ (F (M)) and F−1(W s
ρ (M)) ⊃W s

ρ (F−1(M))

Proof. The proof follows from the graph transform applied to the kergodic maps. The
key point in this classical proof (see e.g. [10]) is to control the Lipschitz-closeness between

F̂M and the linear map dF̂M(0). In the following steps, we show that the main conditions

to apply the graph transform are satisfied by F̂M , if ρ is small enough.
We do now the estimates in detail for the case where M ∈ A and F (M) ∈ A. In fact,

in the other cases, F is linear or uniformly hyperbolic, and the estimates are analogous
in the uniformly hyperbolic case. Let Lip1(M) denote the space of 1-Lipschitz functions
s, from Bu

M(0, ρ) to Bs
M (0, ρ), satisfying s(0) = 0. Consider in Lip1(M) the norm

||s|| = sup
x 6=0

|s(x)|
|x| .

Denote by π1 (resp. π2) the projection onto IRu (resp. IRs) in the direction of IRs (resp.
Eu).

Step 1 - The function π1 ◦ F̂M ◦ (Id, s), where Id is the identity at IRu, is a Lipeo-
morphism from Bu

M(0, ρ) onto Bu
M(0, ρ), satisfying

Lip(π1 ◦ F̂M ◦ (Id, s))−1 ≤ 1

(1 − ρχ)|DF̂M(0)|IRu|
, (29)

for a constant χ, independent of M . Indeed, we apply (3.1) to

ξ = (x, s(x))

ξ′ = (y, s(y))
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and remember that the vector (x − y, s(x) − s(y)) is almost horizontal, due to the fact

that s ∈ Lip1(M). That gives |DF̂M(0)(ξ − ξ′)| = |DF̂M(0)|IRu|.|x − y|. Applying the
argument on the Lipschitz constant for the inverse map (see [10], point 1.5, page 137),
the result follows, for ρ small enough (remember that C3 = ρ.C0).

Step 2 - We now set

ΓF (s) = π2 ◦ F̂M ◦ (Id, s) ◦ (π1 ◦ F̂M ◦ (Id, s))−1,

the classical graph transform operator, and we claim that Γ(Lip1(M) ⊂ Lip1(F (M)).

Indeed, we have Γ(s)(0) = 0, since F̂M(0) = 0, and, for x and y in Bu
F (M)(0, ρ),

|ΓF (s)(x) − ΓF (s)(y)| = |π2 ◦ F̂M ◦ (Id, s) ◦ (π1 ◦ F̂M ◦ (Id, s))−1(x)

−π2 ◦ F̂M ◦ (Id, s) ◦ (π1 ◦ F̂M ◦ (Id, s))−1(y)|.

Now, expression (28) gives that DF̂M(ξ) ◦ DF̂−1
F (M)(0) is χρ-close to the identity in the

canonical basis (in the kergodic charts), where χ is an universal constant (some other
conditions will be given for χ later). Therefore, for any (α, β) in IR2, we have

π1(DF̂M(ξ)(α(1, 0) + β(0, 1))) = αχρDF̂M(0)|IRu .(1, 0) + β(1 + χρ)DF̂M (0)|IRs .(0, 1).

Hence, we get

|ΓF (s)(x) − ΓF (s)(y)| ≤ C3C5ρ

(1 − χρ)

|DF̂M(0)|IRu|
|DF̂M(0)|IRu||

|x− y|. (30)

For ρ sufficiently small, ΓF (s) is in Lip1(F (M)).

Step 3 - If x ∈ Bu
M(0, ρ) and y ∈ Bs

M(0, ρ), then

|π2 ◦ F̂M(x, y) − ΓF ◦ π1 ◦ F̂M(x, y)| ≤ χ|DF̂M(0)|IRs |.|s(x) − y|
for some constant χ. In fact, we have

|π2 ◦ F̂M (x, y) − ΓF ◦ π1 ◦ F̂M(x, y)| ≤ |π2 ◦ F̂M(x, s(x)) − ΓF ◦ π1 ◦ F̂M(x, y)|
+|π2 ◦ F̂M(x, s(x)) − π2 ◦ F̂M(x, y)|.

Now, expression (30) gives

|π2 ◦ F̂M(x, s(x)) − ΓF ◦ π1 ◦ F̂M(x, y)| ≤ |π1 ◦ F̂M ◦ (Id, s)(x) − π1 ◦ F̂M(x, y)|.

Now,

F̂M ◦ (Id, s)(x) − F̂M(x, y) =

∫ 1

0

DF̂M(x(1, 0) + t(s(x) − y)(0, 1)).|s(x) − y|(0, 1)dt.

Using again (28), we find

|π2 ◦ F̂M(x, s(x)) − ΓF ◦ π1 ◦ F̂M(x, y)| ≤ χρ|DF̂M(0)|IRs|.|s(x) − y|.
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The same computations produce

|π2 ◦ F̂M (x, s(x)) − π2 ◦ F̂M(x, y)| ≤ χ|DF̂M(0)|IRs|.|s(x) − y|, (31)

and, finally, we get

|π2 ◦ F̂M(x, s(x)) − ΓF ◦ π1 ◦ F̂M (x, y)| ≤ χ|DF̂M(0)|IRs|.|s(x) − y|,
for some positive χ.

Step 4 - It remains to show that ΓF is a contraction from Lip1(M) to Lip1(F (M)).
For x in BF (M)(0, ρ) and for s1 and s2 in Lip1(M), we have

|ΓF (s1)(x) − ΓF (s2)(x)| = |π2 ◦ F̂M ◦ (Id, s1) ◦ (π1 ◦ F̂M ◦ (Id, s1))
−1(x)

−ΓF (s2)[π1 ◦ F̂M ◦ (Id, s1) ◦ (π1 ◦ F̂M ◦ (Id, s1))
−1(x)]|

Therefore (31) gives

|ΓF (s1)(x) − ΓF (s2)(x)| ≤ χ|DF̂M(0)|IRs |.|s1(π1 ◦ F̂M ◦ (Id, s2))
−1(x)

−s1(π1 ◦ F̂M ◦ (Id, s1))
−1(x)|.

Using the norm for s1 − s2, we get

|ΓF (s1)(x) − ΓF (s2)(x)| ≤ χ|DF̂M(0)|IRs|.||s1 − s2||
|π1 ◦ F̂M ◦ (Id, s2))

−1(x)|
|x| ,

and (31) yields to

|ΓF (s1)(x) − ΓF (s2)(x)| ≤
χ|DF̂M(0)|IRs |

(1 − χρ)|DF̂M(0)|IRu|
||s1 − s2||.|x|,

and, finally,

|ΓF (s1)(x) − ΓF (s2)(x)| ≤ χ|DF̂M(0)|IRs |
(1 − χρ)|DF̂M(0)|IRu|

||s1 − s2||

≤ χ

1 − χρ

(√
λ

σ

)n

||s1 − s2||.

The conclusion of the argument is analogous to the hyperbolic case.

Using the inverse kergodic maps, we have similar result for the stable vector field. The
graph will be the graph of the map gs

M . As usually, we define

W s(M) =
⋃

n≥0

F−n
(F n(M))(W

s
1 (F n(M))) and W u(M) =

⋃

n≥0,

F n(W u
1 (F−n(M))).

These two manifolds are immersed Riemannian manifolds. They inherit a Riemannian
structure and a Riemannian metric, from the ambient IR2. These two metrics will respec-
tively be denoted by ds and du.

For M in Λ \ ΛF we may define the smallest positive integer n such that M−n =
f−n(M) belongs to ΛF . Then we set W u

ρ (M) as the open ball in the Riemannian manifold
fn(W u(f−n(M))) of radius ρ (and for the metric du). Similarly we can define W s

ρ (M) for
M in Λ \ ΛF .
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Remark 6. The result of proposition 5.1 and the definitions of the stable or unstable
leaves can be adapted to all the points in ΛF outside the orbit of tangency. In fact, points
in the bottom side of the square have the same stable manifold as (0, 0), and points in
the left-hand side of the square have the same unstable manifold as (0, 0).

From now on, we consider that C3 := ρ1.C0 is fixed. For the next proposition, we give
new bounds for λ and σ, respecting the restrictions we put before.

Lemma 5.2. There exist ε1 > 0, 0 < λ < 1 and σ > 1 (satisfying the previous conditions)
such that, if (g(y), y) is a C2 curve contained in region R4, C2 ε1-vertical (meaning that the
first and second derivatives of g are smaller than ε1 in modulus), then any curve (g0(y), y)
contained in fn(g(y), y)∩ R4 is also C2 ε1-vertical.

Proof. First consider a C2 curve (s, φ(s)), s ∈ [−1, 1], such that φ′(0) = 0, −1 < φ(0) =
y0 ≤ 0 and 2c−1 < φ′′(s) < 2c+1. Then φ is a convex curve, with an unique critical point
s = 0, admiting two branches of inverse, say g1 and g2 satisfying gi(φ(s)) = s, i = 1, 2.
Assume that g1(y) = s ≥ 0 and g2(y) = s ≤ 0. Then we have

(2c− 1)s < φ′(s) < (2c+ 1)s

and

(2c− 1)
s2

2
< φ(s) − φ(0) < (2c+ 1)

s2

2

Using the last estimate, we find

√
φ(s) − φ(0)

2c+ 1
< |s| <

√
φ(s) − φ(0)

2c− 1

We do now estimates for g1, and the ones for g2 are analogous. Remember that g1 is the
positive branch of inverse of φ. Then we have

|g′1(y)| =
1

|φ′(s)| <
1

(2c− 1)s
<

√
2c+ 1

(2c− 1)
√
y − y0

<
χ2√
y − y0

. (32)

We also have
|g′′1(y)| = |(g′1(y))3φ′′(s)| < χ3

(
√
y − y0)3

. (33)

Now consider the curve (λng1(y), σ
ny) for y in the domain of g1 and 1/3 < σny < 1.

This curve is the graph of the function ψ(y) = λng1(σ
−ny), with 1/3 < y < 1, that

satisfies (using (32))

|ψ′(y)| = |λng′1(σ
−ny)σ−n| < χ2λ

n

√
3σn/2

(34)

Using (33), we also find that

|ψ′′(y)| = |λnσ−2ng′′1(σ
−ny)| < χ3λ

n

√
3

3
σ7n/2

(35)

Now we conclude the proof of the lemma. Remember that the function Γ in remark
(1) sends vertical lines into parabolas of equation y = c(x − q)2 − x0. We choose ε1

such that the image of a C2 ε1-vertical curve is sent by Γ in a curve (s, φ(s)) satisfying
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2c− 1 < φ′′(s) < 2c+ 1. We choose λ small and σ big enough such that the last terms in
estimates (34) and (35) are both smaller than ε1 for n = 1.

Start with a C2 ε1-vertical curve. Since the linear map L applied to a C2 ε1-vertical
curve is yet a C2 ε1-vertical curve, the map Γ guarantees the estimates for the second
derivative of the image (s, φ(s)) of the initial curve. Then, up to a change of the coordinate
s, we can assume that the only critical point of φ is 0, and its image is ≤ 0 (the image of
the function Γ is contained in the region below y = c(x− q)2). This completes the proof
of the lemma.

Notice that for a given c and for a given ε1 the previous computations give lower
bounds for σ and 1

λ
. From now on the constants c and ε1 are fixed, and λ and σ are

assumed to satisfy all the required previous conditions.

Proposition 5.3. Let U be an open set in Λ. Then there exist two positive integers n−
U

and n+
U such that fn+

U (U) contains an unstable manifold which joins the bottom of the

square to the top of the square, and f−n−

U (U) contains a stable manifold which joins the
left of the square to the right of the square.

Proof. We first check that there exists a point in U whose forward orbit meets A. Indeed,
pick any M in U and iterate W u

1 (M)∩U . As long as this connected piece of unstable leaf
stays in R3 or R5 its length growths exponentially fast. Then one of its forward iterates
must be a vertical curve which joints the top of R3 to the bottom of R3 or the top of R5

to the bottom of R5. Hence the next iterate crosses R4 and the after next iterate meets
A. Now, the first iterate of this last piece of unstable leaf lies in R′

1 and joins the bottom
of Q to the top of Q. The same holds for the backward iterates of U , exchanging the
vertical and the horizontal directions.

The consequence is that for every n ≥ n+
U , fn(U) contains a piece of unstable manifold

which joins the bottom of Q to the top of Q. In the same way, for every m ≥ n−
U , f−m(U)

contains a piece of stable manifold which joins the left side of Q to the right side.

Corollary 5.4. The map f is mixing.

Proof. Let V be any open set in Q. Then for every n ≥ n+
U +n−

V , fn(U)∩V is non-empty
; thus f is mixing.

Remark 7. In fact lemma 5.2 and proposition 5.3 prove that the unstable manifolds are
long curves, in the sense that for any point in Λ#, the connected component of its unstable
manifold in Q which contains the point is a curve which goes from the bottom to the top
of the square. This connected component is denoted by W u

loc(M) Analogously, we define
W s

loc(M). Notice that, since the tangent vectors of those curves are inside the cone fields,
there exists a positive constant K such that the arc length of W s,u

loc (M) is smaller than K,
for all M ∈ Λ. As a consequence of the results in the next section, given two manifolds
W s

loc(M) and W u
loc(M

′), their intersection consists of exactly one point, that is, Λ# has a
product structure. For two points M and M ′ in Q# we set JM,M ′K the intersection of
the stable leaf which contains M in the square and the unstable leaf which contains M ′.

5.2 Extra properties of the foliations and F

In the next result we use the existence of (un)stable manifolds to prove the Hölder regu-
larity for the hyperbolic splitting.
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Proposition 5.5. There exist two positive constants, C1 and C2 such that in ΛF , the maps

z 7→ eu(z) and z 7→ es(z) are respectively C1 −
1

2
-Hölder continuous and C2 −

1

2
-Hölder

continuous for the Euclidean metric ||.||.

Proof. Let us first consider two C2 maps, φ1 : [0, 1
3
] → [0, 1] and φ2 : [0, 1

3
] → [0, 1] with

first and second derivatives smaller, in modulus, than ǫ > 0. Assume that the two graphs
have empty intersection, and take I = (a, A) in the graph of φ1 and J = (b, φ2(b)) in the
graph of φ2. Let K = (a, φ2(a)), B := φ2(a), and assume that B ≥ A, φ′

1(a) ≥ φ′
2(a) and

a ≤ 1
6

(the other cases can be obtained from this one). We thus have

|φ′
1(a) − φ′

2(b)| ≤ |φ′
1(a) − φ′

2(a)| + |φ′
2(a) − φ′

2(b)|. (36)

The conditions on φ2 mean that the second term in the right hand side of (36) is smaller
than ǫ.|a− b|. Now, the standard computation in differential calculus gives

φ1(t) ≥ A+ (t− a)φ′
1(a) − ǫ.

(t− a)2

2
, and φ2(t) ≤ B + (t− a)φ′

2(a) + ǫ.
(t− a)2

2
.

The fact that the two curves have an empty intersection yields to

ǫ.(t− a)2 + (t− a)(φ′
2(a) − φ′

1(a)) +B − A ≥ 0,

for every t in [0, 1
3
]. The minimal value is obtained for t− a :=

φ′
1(a) − φ′

2(a)

2ǫ
.

If this value is smaller than 1
3
− a, then we obtain

ǫ.

(
φ′

1(a) − φ′
2(a)

2ǫ

)2

− (φ′
1(a) − φ′

2(a))
2

2ǫ
+B − A ≥ 0,

which yields to

0 ≤ (φ′
1(a) − φ′

2(a))
2 ≤ 4ǫ.(B − A). (37)

If
φ′

1(a) − φ′
2(a)

2ǫ
≥ 1

3
− a,

then we obtain

ǫ.

(
1

3
− a

)2

−
(

1

3
− a

)
(φ′

1(a) − φ′
2(a)) +B −A ≥ 0,

which yields to

0 ≤ φ′
1(a) − φ′

2(a) ≤ 12(B −A). (38)

Hence, (36) (37) and (38) yield to

|φ′
1(a) − φ′

2(b)| ≤ C|a− b| + C ′√B − A.

We also have √
B − A ≤

√
|φ2(b) − φ1(a)| +

√
|φ2(b) − φ2(a)|.
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This last term in the sum is smaller than
√
ǫ.|a− b| 12 , which is smaller than

√
ǫ||I − J || 12 .

As a direct consequence of our computation, with ǫ = ε1, we get that the unstable
vector field is at least 1

2
-Hölder continuous in R3 ∪R4 ∪R5, with some universal constant

(which depends on ε1). Now the map Γ is C2 on the compact set [0, 1]2, and so there exists
some constant C1 such that the unstable vector field is (at least) 1

2
-Hölder continuous in

ΛF . The proof for the stable vector field is analogous.

6 Markov partitions and equilibrium states

In this section we prove that the map f is not expansive (see the definition below), and
construct a Hölder continuous finite-to-one semi-conjugacy from the full shift on the space
of sequences of three symbols to Λ.

6.1 Expansiveness fails

Recall that a diffeomorphism g is said to be expansive if there exists a constant δ > 0
such that, if d(gn(x), gn(y)) < δ for every n ∈ ZZ, then x = y. Expansiveness is the
usual tool to get existence of the equilibrium states. Indeed, expansiveness implies the
upper semi-continuity for the map µ 7→ hµ(g), where hµ(g) is the metric entropy of g
with respect to µ. Nevertheless, expansiveness is not necessary to get this upper semi-
continuity. In Bowen’s proof (proposition 2.19 p. 64 in [5]), the main argument to get it
is that every partition with sufficiently small radius is generating (its entropy is equal to
the metric entropy). In our case, it is not true, due to the non-expansiveness, that every
partition with sufficiently small diameter is generating. However it can be proved that
the geometric partition G1, to be defined below, is generating. This is sufficient to get the
upper semi-continuity of the metric entropy.

Let us now briefly prove why f is not expansive. Let δ > 0 be fixed, and pick two
points A and B close to the critical point Q = (q, 0), such that B belongs to the unstable
manifolds of A but just on the opposite side ofQ, and B also belongs to the stable manifold
of A, see figure 5. This can be done because, locally, the unstable manifolds are C2-close of
two branches of parabolas and the stable manifolds are long “horizontal” curves. Choosing
A and B sufficiently close to Q we get that A 6= B but d(fn(A), fn(B)) ≤ δ for every
n ∈ ZZ.

6.2 Proof of Theorem B

For n ∈ IN, we define the degenerated partition Gn as follows. Let Ri
n, i ∈ {1, . . . , 32n}

be the connected components of fn(Q#) ∩ f−n(Q#). Then Gn = {Ri
n, i = 1, . . . , 32n}.

For convenience, we call R1
n the element of Gn to which (0, 0) belongs. Then Gn has the

following properties:

- each atom Ri
n is bounded by arcs of the stable and unstable manifolds of (0, 0) and

(1, 1);

- for each n ∈ IN and each i ∈ {1, . . . , 32n}, fn(Ri
n) is a stripe crossing Q from the

bottom to the top, and f−n(Ri
n) is a stripe crossing Q from the left to the right

sides;
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A B

Q

Figure 5: choice of A and B

- there are 2n pairs of atoms that are not disjoint: they intersect in a point of the
orbit of tangency;

- each atom Ri
n+1 of Gn can be obtained as f−1[f(Rj

n)∩Rl
n]∩f [f−1(Rj

n)∩Rk
n], where

Ri
n+1 ⊂ Rj

n.

G G
1 2

Figure 6: the partitions G1 and G2

Remark 8. The partitions Gn are not real partitions, in the sense that some points of
the orbit of homoclinic tangency are in two atoms. Due to the last condition above, for
each −n+ 1 ≤ k ≤ n− 1, the image by fk of points in the same element of Gn belong to
the same element of G1.

Proposition 6.1. The length of the boundary of each Ri
n goes to zero exponentially with

n.

Proof. Let R = Ri
n ∈ Gn. Denote by ∂uR and ∂sR, respectively, the unstable and stable

components of the boundary of R, each containing two connected components.
Notice that, due to remark 8, we can define the itinerary of R from −n + 1 to n− 1.

For some values of k in such interval, fk(R) may be contained in R1
1. Define ni and
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n−i as follows: n1 = k − 1 where k is the first iterate of R in R1
1, and ni+1 > ni is the

biggest iterate of R not in R1
1 and such that fni+1(R) ⊂ R1

1. The sequence n−i is defined
analogously for iterates by f−1.

There are some cases to be considered concerning the itinerary of R. The easiest one
is when the iterates −n + 1 and n + 1 are outside R1

1, and are not at the sequences ni

and n−i. In this case, all the unstable vectors vu tangent to ∂uR, and the stable vectors
vs, tangent to ∂sR, have grown exponentially by Dfn and Df−n, with a factor of

√
σ

and
√
λ, respectively. Then we have ||Dfn

Mv|| ≥ σn/2 and ||Df−n
M ′ vs|| ≥ λ−n/2, for M in

∂uR and M ′ in ∂sR. Since the length of the local stable and unstable manifolds in Q
is bounded from above by K (see remark 7), we have that each component of ∂uR has
length smaller than Kσ−n/2, and each component of ∂sR has length smaller than Kλn/2.

We now prove the proposition in the other cases for the unstable boundary of R, and
the stable case is completely analogous. Assume first that ni = n − 1. It means that
fn−1R is contained in one of the two atoms of G1 that contain (q, 0), and its length at
that moment is smaller than K ′. Since the estimates above are valid until n− 1, we have
that ∂uR has length smaller than K ′σ−(n−1)/2 < K̃σ−n/2.

In the remaining case, we have that for each k between ni and n − 1, fk(R) ⊂ R1
1.

Notice that, in this case, we have that the estimates on the growth of the tangent vector
to ∂uR apply until ni. There is also a part of fni∂uR that escapes from R1 by the
remaining iterates, assuming size smaller than K, to which our estimates apply until n.
The remaining part of fni(∂uR) is confined to the horizontal stripe [0, 1] × [0, σ−(n−ni)].
The maximum length of an unstable manifold in that stripe is smaller than χ

√
σn−ni/c. It

gives us that the length of ∂uR is smaller thanKσ−n/2+χ′√σn−ni/cσ−ni/2 = ˜̃Kσ−n/2.

Let Σ3 be the space of bi-infinite sequences of three symbols. From now on, we also
denote by σ the shift on Σ3, avoiding confusion with the unstable eigenvalue, would it
appear. As a corollary of proposition 6.1, we get the next important result:

Proposition 6.2. There exists a finite-to-one and onto Hölder continuous semi-conjugacy,
Θ, between the two dynamical systems (Σ3, σ) and (Λ, f).

Proof. We associate the numbers 0,1, and 2 to the components of f(Q) ∩ Q as follows.
We assign the number 0 to R′

1, 1 to the component at the right-hand side of the critical
point (q, 0), and 2 to the remaining part. Notice that the point (q, 0) is in the intersection
of the two regions 1 and 2. Via this correspondence, we associate to each atom Ri

n of the
partition Gn, a centered word of length 2n+ 1, in the following way. As a consequence of
the definition of Gn, all points in Ri

n have their images by fk falling in the same stripe
sk = 0, 1 or 2, for all −n ≤ k ≤ n. We associate to Ri

n the centered word [s−n, . . . , sn].
Notice that 2 different atoms of Gn define two different words.

Let us now define the map Θ : Σ3 → Λ. Let ξ
def
= (ξk)k be in Σ3. As usually we

define the n-cylinder Cn(ξ) as the set of sequences ξ′ = (ξ′k)k such that ξk = ξ′k for any
−n ≤ k ≤ n. Such a n-cylinder defines (and is defined by) a centered word of length
2n+1 in Σ3. To each such n-cylinder we associate the unique element of the partition Gn

which have the same centered word: we set Θ(C) = R, where C is a n-cylinder, and R is
the atom of Gn which have the same centered word of length 2n+1 than C. For a fixed ξ in
Σ3, each Θ(Cn(ξ)) is a non-empty compact set ; the sequence (Θ(Cn(ξ)))n is a decreasing
sequence of compact sets, which thus have a non-empty intersection. Proposition 6.1 also
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implies that this infinite intersection is a single point. Hence we set

Θ(ξ)
def
=
⋂

n

Θ(Cn(ξ)).

This defines the map Θ. Clearly we have Θ ◦ σ = f ◦ Θ.
We now prove that Θ is onto. For any ξ in Λ we build the code ξ in the following way.

For each integer k, ξk is the number of the (one) full vertical band which contains fk(ξ).

This defines at least one bi-infinite ξ
def
= (ξk)k in Σ3 such that Θ(ξ) = ξ.

To see that Θ is finite-to-one, notice that, by construction of the map, only points
in the critical orbit have several pre-images by Θ. Indeed the atoms of the partition
Gn are disjoint, except for the points in the critical orbit. Moreover, any such point
ξ as at least two pre-images by Θ which are the bi-infinite words . . . , 0, 0, 1, 0, 0, . . . and
. . . , 0, 0, 2, 0, 0, . . .where the 1 and the 2 are at the same position in the sequence. However
itinerary of the critical orbit is very simple. Any point ξ whose orbit contains T (and
Q), fk(ξ) has its backward iterates the segment {0} × [0, t], its first iterate is Q and
the remaining iterates are in [0, q] × {0}. As the ‘0’ band is disjoint from the 2 other
bands, a critical point cannot have other pre-images than the 2 ones indicated above.
This completes the prove that Θ is finite-to-one.

To conclude the proof of the proposition, it remains to show that Θ is Hölder contin-
uous. It follows from classic arguments, that is based in the exponential decay for the
diameter of the atoms of Gn. We recall that the distance on Σ3 between two sequences ξ

and ξ′ is
1

2n
, where n is the largest non-negative integer such that ξ′ belongs to Cn(ξ). As

a consequence of the proof of proposition 6.1, for any non-negative integer n and for any ξ

in Σ3, Θ(Cn(ξ)) has diameter smaller than K.(λ
n
2 +σ−n

2 ). If ξ′ ∈ Cn(ξ) but ξ′ /∈ Cn+1(ξ),
then d(ξ, ξ′) = 1/2n, and Θ(ξ) and Θ(ξ′) belong to the same atom of Gn. Therefore we
get

∣∣Θ(ξ) − Θ(ξ′)
∣∣ ≤ 2.K.dγ(ξ, ξ′),

where γ = min(− log
√
λ

log 2
,
log

√
σ

log 2
).

Remark 9. Notice that for every f -invariant measure µ, the critical orbit has null µ-
measure. In the same way, for every σ-invariant measure in Σ3, the set of sequences
where Θ is one-to-one has full measure. Therefore, any push-forward of any σ-invariant
measure in Σ3 on Λ by Θ is a f -invariant measure; conversely any pull-back on Σ3 of any
f -invariant measure is a σ-invariant measure. Notice also that, as mentioned in remark
7, if M and M ′ are not in the orbit of tangency, W s

loc(M)∩W u
loc(M

′) consists of only one
point, that we call JM,M ′K. We also have that each Ri

n is a rectangle, in the sense of
Bowen: if M and M ′ are in Ri

n then JM,M ′K ∈ Ri
n;

The proof of Theorem B is now immediate. Indeed, for any Hölder continuous function
ϕ : Q → IR, ϕ ◦ Θ is a Hölder continuous function from Σ3 to IR. Thus there exists a
unique equilibrium state, which is also a Gibbs measure, associated to ϕ ◦ Θ in Σ3. The
push-forward of this measure on Λ gives some f -invariant measure µϕ on Λ. As Θ is
finite-to-one, µϕ has maximal ϕ-pressure on Λ.
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Invent. Math., 112(3):541–576, 1993.

[4] C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose
central direction is mostly contracting. Israel Journal of Math., 115:157–193, 2000.

[5] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,
volume 470 of Lecture notes in Math. Springer-Verlag, 1975.

[6] Y. Cao, S. Luzzatto, and I. Rios. Some non-hyperbolic systems with strictly non-zero
lyapunov exponents for all invariant measures: Horseshoes with internal tangencies.

[7] H. Enrich. A heteroclinic bifurcation of anosov diffeomorphisms. Ergodic Theory
Dynam. Systems, 18(3):567–608, 1998.

[8] A. Fathi, M.-R. Herman, and J.-C. Yoccoz. A proof of Pesin’s stable manifold theo-
rem. In Geometric dynamics (Rio de Janeiro, 1981), volume 1007 of Lecture Notes
in Math., pages 177–215. Springer, Berlin, 1983.

[9] M. W. Hirsch, C. C. Pugh, and M. Shub. Invariant manifolds. Springer-Verlag,
Berlin, 1977. Lecture Notes in Mathematics, Vol. 583.

[10] M.W. Hirsch and C.C. Pugh. Stable manifolds and hyperbolic sets. Proc. Sympos.
Pure Math., (14):133–163, 1970.

[11] H. Hu. Conditions for the existence of SBR measures for ‘Almost Anosov Diffeomor-
phisms’. Transaction of AMS, 352(5):2331–2367, 2000.

[12] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms Part I: Char-
acterization of measures satisfying Pesin’s entropy formula. Annals of Mathematics,
122:509–539, 1985.

[13] K. Oliveira. Equilibrium states for non-uniformly expanding maps. Ergodic Theory
Dynam. Systems, 23(6):1891–1905, 2003.

[14] Ya. B. Pesin. Characteristic Lyapunov Exponents and Smooth Ergodic Theory.
Russian math. Surveys, 32(4):55–114, 1977.

[15] Ya. B. Pesin. Lectures on partial hyperbolicity and stable ergodicity. Zurich Lectures
in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2004.
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